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Abstract

This paper describes a procedure for building the dynamic stiffness matrix of two-dimensional elements
with free edge boundary conditions. The dynamic stiffness matrix is the basis of the continuous element
method. Then, the formulation is used to build a Kirchhoff rectangular plate element. Gorman’s method of
boundary condition decomposition and Levy’s series are used to obtain the strong solution of the
elementary problem. A symbolic computation software partially performs the construction of the dynamic
stiffness matrix from this solution. The performances of the element are evaluated from comparisons with
harmonic responses of plates obtained by the finite element method.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The continuous element method [1,2] is based on the dynamic stiffness matrices of structural
elements. This method is an attractive alternative to the finite element method for analysis of
harmonic response of complex structures that are made up of simple structural elements. This
method, often known as the ‘‘dynamic stiffness method’’, is related to a minimal discretization of
the domain. The formulation is able to cover the entire frequency range of validity with respect to
a given elastodynamic theory. Continuous elements are mainly used to describe the dynamic
see front matter r 2004 Elsevier Ltd. All rights reserved.
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behavior of assemblies composed of straight or curved beams [3,4]. For such structures,
the meshing of the domain is given by its topology. Beam elements are not discretized.
Modal analysis is achieved by the use of specific algorithms [5]. The formulation is based on the
strong solution of the dynamic problem formulated in the frequency domain. Fast Fourier
transform algorithms could be used to obtain this solution, and this method is also known as the
spectral element method [6,7]. Inverse Fourier transform is used to obtain solution in the time
domain.
The strong solution allows one to describe an infinity of eigensolutions. The main idea

is to build, for each element, the dynamic stiffness matrix, which is a function of the
circular frequency o of the harmonic regime. These matrices are denoted KeðoÞ and
describe exact relations between external forces and displacements at the tips of the element
according to

KeðoÞ:Ue ¼ Fe. (1)

Computer codes based on continuous elements have been elaborated in France [8], the
UK [9,10] and Germany [11] but for their expansion, such codes need a larger library of elements,
above all involving plates [12] and shells [13]. With this formulation, the mode shapes inside
he element can have a great number of nodal points. In principle, this method can provide a
solution for frequency responses in any bandwidth of frequencies for which the validity of the
continuum elastodynamic has been fully defined. Continuous plate elements are directly deduced
from the theory of vibrations of plates having simple geometries such as triangles or rectangles.
This chapter in elastodynamics has been largely studied during the last 50 years since
Mindlin’s famous equations [14]. There is an abundant literature on this subject and it exceeds
the scope of this paper to cover all the publications in this domain. Leissa [15] in his book
has gathered all possible approximate solutions for vibrations for various plate geometries
and for various boundary conditions. The Rayleigh–Ritz method is frequently used for
calculating plate vibrations. Unfortunately, the displacement field is often too simple and
thus solutions are valid only over a restricted frequency domain. The main difficulty surrounding
plate’s vibration problems lies in the fact that for some sets of boundary conditions (for
example free edges), it is not possible to find exact solutions that satisfy all the boundary
conditions. Gorman [16] suggested a solution for plates with all edges free which merits attention.
The problem consists of not seeking an exact solution, which is theoretically impossible,
but rather finding an approximate solution that satisfies the degree of accuracy chosen previously.
Solutions are presented as infinite series which are able to describe an infinity of modes. But,
in practice, the series have to be truncated. Gorman’s clever method will be used in this
paper. Kulla [1] in Germany was the first to present applicable solutions in plate continuous
elements. Hagedorn [17] used Gorman’s method to evaluate the impedance between two points
inside a plate.
The main object of this paper is to present the principle of development of two-dimensional

elements such as plates and how symbolic computation software could be used in this
purpose. The method for construction of dynamic stiffness matrices is applied to the
Kirchhoff bending elements, whereafter the method’s performance is compared to that of the
finite element method.
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2. Two-dimensional continuous element

2.1. Elementary formulation

The continuous element formulation is based on the strong solution of the elastodynamic
problem for a free boundary condition set applied on the element. For a given plate theory and
under a harmonic regime of circular frequency o; the strong formulation of the dynamic problem
is given by a partial derivative system of Eq. (2) satisfied by the displacement components defined
on the domain of the plate O: The number p of the components of the displacement vector u

depends on the underlying elastodynamic theory. The strong formulation is also given by a set of
boundary conditions (3) defined on the limit of the domain of the plate qO: The free boundary
conditions impose the value of several internal force components on qO: These components are
obtained from the derivatives of the displacement components by the force–displacement
relationship.

LoðuÞ ¼ q on O (2)

withLo being a differential operator and q the distributed load applied on the element domain O:

f . . . ;
qku

qxiqyj
; . . .

 !
¼ Fext on qO (3)

with f being the force–displacement relationship and Fext the external forces applied on the
boundary qO; x and y being spatial coordinates.
2.2. General solution

In contrast to the solution of the beam problem, general solutions of two-dimensional problems
described above are not expressible with a finite combination of elementary functions. The p
components ui of the displacement solution u of the homogeneous equation associated to Eq. (2)
will be expressed here by an infinite series of functions Eq. (4).

uiðx; yÞ ¼
X1
n¼1

Cinhinðx; yÞ i 2 ½1; . . . ; p� (4)

with Cin being integration constants depending on the boundary conditions (3) and hin basis
functions that satisfy the homogeneous equation associated to Eq. (2).
The numerical approach involves truncated series, hence the need to choose an integer N which

allows one to adequately approximate the general solution with expression (5).

uiðx; yÞ �
XN

n¼1

Cinhinðx; yÞ. (5)

Choosing a suitable basis of functions hin; this choice is the main object of the procedure. These
functions should give a good approximation of the general solution for a small value of N.
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If integration constants Cin are assembled in only one vector C; the matricial form of the
solution may be written according to expression (6).

uðx; yÞ � Hoðx; yÞ:C. (6)

2.3. Boundary conditions

The second difference between beam continuous elements and plate elements is the dimension
of the limit of the elementary domain qO: The limit is a one-dimensional space. The boundary of
beam elements is formed by 2 points, and force and displacement on the boundary are vectors in
R6: Here, force and displacement defined on the boundary are one-variable vectorial functions.
Expression (1) should be a relation between the projections of these functions on a Hilbert basis.
If the limit of the domain is defined with a two-component function of the curvilinear abscissa s

noted BðsÞ; expression (6) allows one to obtain the restriction quðsÞ ¼ uðBðsÞÞ of the displacement
solution to the limit of the domain qO:

quðsÞ � HoðBðsÞÞ:C ¼ qHoðsÞ:C. (7)

From the derivatives of the displacement components, the force–displacement relationship gives
the force functions along the limit of the domain qO: The vector created with these functions is
noted qfðsÞ and is given by qfðsÞ ¼ fðBðsÞÞ: The vector fðx; yÞ is a function of the derivatives of
displacement functions and is expressible with the same integration constants Cin: One obtains,
for its restriction to the boundary,

qfðsÞ ¼ qGoðsÞ:C. (8)

Component functions of the matrix qGoðsÞ are obtained from derivation of the component
functions of Hoðx; yÞ according to Eq. (3). These derivatives are then expressed on qO:

2.4. Dynamic stiffness matrix

Eq. (1) relating forces components and displacement components on the limit of the domain qO
is obtained from the projections of the p components of quðsÞ and qfðsÞ on a functional basis. The
dynamic stiffness matrix is afterwards obtained from the linear relation between these projections.
If ðekðsÞÞk2N is a Hilbert’s basis defined on the limit of the domain qO; the p components of quðsÞ
and of qfðsÞ are obtained from expressions (9) and (10)

quiðsÞ ¼
X1
k¼1

hqui; ekiekðsÞ; i 2 ½1; . . . ; p�, (9)

qf iðsÞ ¼
X1
k¼1

hqf i; ekiekðsÞ; i 2 ½1; . . . ; p�. (10)

The projections of the function are defined from the scalar product

hf ; gi ¼

Z
qO

f ðsÞgðsÞds.
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In order to obtain a relation similar to Eq. (1), the series Eqs. (9) and (10) are truncated to rank
M, and the p � M projections relative to each series are collected into two vectors

Ue ¼ fhqui; ekigði;kÞ2½1;...;p��½1;...;M� and Fe ¼ fhqf i; ekigði;kÞ2½1;...;p��½1;...;M�.

The components of qHoðsÞ are noted qHijðsÞ and whence the components of Ue are obtained from
expression (11)

U ði�1ÞMþk ¼ hqui; eki ¼ hqHij; ekiCj. (11)

Likewise, if qGijðsÞ are the components of the matrix qGoðsÞ; the components of the vector Fe are

F ði�1ÞMþk ¼ hqf i; eki ¼ hqGij; ekiCj (12)

and hence, in a matricial form

Ue ¼ AðoÞ:C (13)

with Aði�1ÞMþk;jðoÞ ¼ hqHij; eki and

Fe ¼ BðoÞ:C (14)

with Bði�1ÞMþk;jðoÞ ¼ hqGij ; eki:
For a choice of M and N such that the matrix AðoÞ is square and invertible, and from

expressions (13) and (14), one gets an expression similar to expression (1) with

KeðoÞ ¼ BðoÞ:AðoÞ�1. (15)
2.5. Post-processing

After assembling dynamic stiffness matrices and numerically solving the obtained linear system
for a given circular frequency o; post-processing is the operation that allows one to obtain each
unknown in the elementary domain O: For each element, this operation is performed using
expression (5) and integration constants C: The integration constants are calculated from the
displacement solution Ue and the inverting of expression (13).
3. Kirchhoff plate continuous element

3.1. Strong formulation

This formulation is used to build a rectangular plate according to the Kirchhoff plate
theory. Constitutive material is homogeneous and isotropic and the thickness of the plate is
constant.
The partial derivative system of Eq. (2) is derived from the well-known Kirchhoff plate Eq. (16)

satisfied by the displacement components, i.e. the transverse displacement wðx; y; tÞ of the middle
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surface and the section’s rotations bx and by:

Dr4w þ rh
q2w
qt2

¼ qðx; y; tÞ,

bx ¼
qw

qx
,

by ¼
qw

qy
ð16Þ

with x and y being Cartesian coordinates and t the time variable, and where D ¼ Eh3=12ð1� n2Þ is
the plate’s bending stiffness with Young’s modulus E, the plate thickness h and Poisson’s ratio n;
r4 ¼ q4=qx4 þ q4=qy4 þ 2q4=qx2qy2 is known as the biharmonic operator, and r is the mass
density. qðx; y; tÞ is the distributed vertical loading in the domain O:
One has to remember that this classical theory is useless for vibrations having wavelengths too

short relative to the thickness of the plate. In this context, the continuous element formulation has
the same limitation as finite elements. Comparisons between these two approaches should be
made with a strict control of the physical validity of the solution obtained.
Under harmonic excitation, Eq. (16) can be rewritten with

wðx; y; tÞ ¼ W ðx; yÞejot, (17)

where o is the circular frequency. In the absence of distributed forces, W ðx; yÞ will satisfy the
following equation:

r4W �
rho2

D
W ¼ 0. (18)

Free boundary conditions (3) are defined on the limit of the domain qO by system (19) and
force–displacement relationship (20) [18]

Tn þ
qMns

qs
¼ Fz þ

qMs

qs
,

Mn ¼ Mn,

Mns ¼ Ms ð19Þ

with

Tn ¼ �D
q3W
qx3

þ
q3W
qxqy2

� �
nx � D

q3W
qy3

þ
q3W
qx2qy

� �
ny,

Mns ¼ Dð1� nÞ
q2W
qx2

�
q2W
qy2

� �
nxny � Dð1� nÞ

q2W
qxqy

n2x � n2y

� �
,

Mn ¼ �D
q2W
qx2

þ n
q2W
qy2

� �
n2

x � D
q2W
qy2

þ n
q2W
qx2

� �
n2

y � 2Dð1� nÞ
q2W
qxqy

nxny, ð20Þ

where Fz; Mn and Ms are external forces applied on the limit of the domain qO: n is the normal
vector defined at each point of the boundary while nx and ny are its components in a Cartesian
reference ðO;x; y; zÞ:
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3.2. General solution for rectangular plates

In the case of rectangular plates, Gorman’s method of decomposition [16] allows one to obtain
a general solution, similar to expression (4), for the completely free rectangular plate. Here, the
only displacement component is the transverse displacement w. The rotations are obtained from
derivation of w while p is equal to 1.
Once the vibration is split into four contributions, respectively, symmetric–symmetric,

antisymmetric–antisymmetric, symmetric–antisymmetric and antisymmetric–symmetric, merely
only a quarter segment of the completely free plate needs to be analyzed. If dimensionless plate
spatial coordinates x ¼ x=a; Z ¼ y=b are used, a and b being the plate dimensions, the transverse
displacement may be written

W ðx; ZÞ ¼ W SSðx; ZÞ þ W AAðx; ZÞ þ W SAðx; ZÞ þ W ASðx; ZÞ (21)

S and A, respectively, designate symmetric and antisymmetric vibrations. The first letter
designates the type of symmetry about y-axis, and the second about x-axis. These contributions
may be expressed in terms of the total displacement W ðx; ZÞ according to the following
expressions (22)

W SSðx; ZÞ ¼ 1
4
½W ðx; ZÞ þ W ð�x;�ZÞ þ W ð�x; ZÞ þ W ðx;�ZÞ�, (22a)

W AAðx; ZÞ ¼ 1
4
½W ðx; ZÞ þ W ð�x;�ZÞ � W ð�x; ZÞ � W ðx;�ZÞ�, (22b)

W SAðx; ZÞ ¼ 1
4
½W ðx; ZÞ � W ð�x;�ZÞ þ W ð�x; ZÞ � W ðx;�ZÞ�, (22c)

W ASðx; ZÞ ¼ 1
4
½W ðx; ZÞ � W ð�x;�ZÞ � W ð�x; ZÞ þ W ðx;�ZÞ�. (22d)

These expressions show that each contribution satisfies the equation inside domain (18) where the
derivation orders with respect to spatial variables are all even. This equation could be rewritten
with dimensionless variables; see Eq. (23)

f4 q4W

qx4
þ 2f2 q4W

qx2qZ2
þ

q4W
qZ4

� f4l4W ¼ 0, (23)

where f ¼ b=a is the aspect ratio of the plate and l4 ¼ a4rho2=D:
For each contribution, the general solution is obtained from the superposition of two building

blocks with simple boundary conditions. These boundary conditions are simple enough to give
rise to a solution expressible with Levy’s series.
For example, fully symmetric solutions are obtained from the following building blocks; see

Fig. 1.
The small pairs of circles indicate that the plate has zero vertical edge reaction and that the

slope of the plate taken normal to the edge is equal to zero [16]. The simple boundary conditions
applied on each block give rise to Levy’s series type solutions (24)

W SSðx; ZÞ ¼
Xþ1

m¼0

1
SSW mðxÞ cos mpZþ

Xþ1

m¼0

2
SSW mðZÞ cos mpx. (24)
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The even functions 1
SSW m and 2

SSW m are obtained from substituting fully symmetric solution Eq.
(24) in Eq. (23). The resolution of the resulting differential equations gives

1
SSW mðxÞ ¼ Amðe

1bmx þ e�
1bmxÞ þ Bmðe

1gmx þ e�
1gmxÞ (25)

bm and gm are complex numbers given by expressions (26).

1b2m ¼
1k2

m þ l2, (26a)

1g2m ¼
1k2

m � l2, (26b)

with 1km ¼ mp=f and

2
SSW mðZÞ ¼ Cmðe

2bmZ þ e�
2bmZÞ þ Dmðe

2gmZ þ e�
2gmZÞ (27)

with

2b2m ¼
2k2

m þ f2l2, (28a)

2g2m ¼
2k2

m � f2l2, (28b)

where 2km ¼ fmp:
Am; Bm; Cm and Dm are complex integration constants.
At this stage, expression (4) is obtained for the symmetric–symmetric contribution. One could

identify the required basis functions by

h1kðx; yÞ ¼ ðe
1bkx=a þ e�

1bkx=aÞ cos kp
y

b
, (29)

h1lðx; yÞ ¼ ðe
1g

l
x=a þ e�

1g
l
x=aÞ cos lp

y

b
, (30)

h1mðx; yÞ ¼ ðe
2bmy=b þ e�

2bmy=bÞ cos mp
x

a
(31)
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and

h1nðx; yÞ ¼ ðe
2gny=b þ e�

2gny=bÞ cos np
x

a
. (32)

The other contributions are obtained likewise and the corresponding basis functions h1n are built.
The expressions of these contributions are the following:
�
 antisymmetric–antisymmetric contribution:

W AAðx; ZÞ ¼
Xþ1

m¼1

1
AAW mðxÞ sin

ð2m � 1ÞpZ
2

þ
Xþ1

m¼1

2
AAW mðZÞ sin

ð2m � 1Þpx
2

(33)

with

1
AAW mðxÞ ¼ Amðe

1bmx � e�
1bmxÞ þ Bmðe

1gmx � e�
1gmxÞ, (34a)

2
AAW mðZÞ ¼ Cmðe

2bmZ � e�
2bmZÞ þ Dmðe

2gmZ � e�
2gmZÞ, (34b)

1bm;
1gm;

2bm and 2gm are given by expressions (26) and (28), where 1km ¼ ð2m � 1Þp=ð2fÞ and
2km ¼ fð2m � 1Þp=2:
�
 symmetric–antisymmetric contribution

W SAðx; ZÞ ¼
Xþ1

m¼1

1
SAW mðxÞ sin

ð2m � 1ÞpZ
2

þ
Xþ1

m¼0

2
SAW mðZÞ cos mpx (35)

with

1
SAW mðxÞ ¼ Amðe

1bmx þ e�
1bmxÞ þ Bmðe

1gmx þ e�
1gmxÞ, (36a)

2
SAW mðZÞ ¼ Cmðe

2bmZ � e�
2bmZÞ þ Dmðe

2gmZ � e�
2gmZÞ (36b)

1bm;
1gm;

2bm and 2gm are given by expressions (26) and (28), where 1km ¼ ð2m � 1Þp=ð2fÞ and
2km ¼ fmp:
�
 antisymmetric–symmetric contribution

W ASðx; ZÞ ¼
Xþ1

m¼0

1
ASW mðxÞ cos mpZþ

Xþ1

m¼1

2
ASW mðZÞ sin

ð2m � 1Þpx
2

(37)

with

1
ASW mðxÞ ¼ Amðe

1bmx � e�
1bmxÞ þ Bmðe

1gmx � e�
1gmxÞ, (38a)

2
ASW mðZÞ ¼ Cmðe

2bmZ þ e�
2bmZÞ þ Dmðe

2gmZ þ e�
2gmZÞ (38b)

1bm;
1gm;

2bm and 2gm are given by expressions (26) and (28), where 1km ¼ mp=f and 2km ¼

fð2m � 1Þp=2:
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As mentioned in Section 3.1, solutions must be within the theoretical limits required by
3.3. Frequency limitation

Kirchhoff’s theory assumptions. Physical significance of the vibration is controlled with the ratio
between the thickness of the plate and the wavelength l of the vibration. This ratio should be far
less than unity. The main consequence is to restrict the frequency range as in finite element
models. If we consider that the physical significance is obtained for a ratio h=l less than 0.1 and the
wavelength l given by expression (39)

l ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffi
D

rho2

4

s
(39)

one obtains

oo
0:04p2

h2

ffiffiffiffiffiffi
D

rh

s
. (40)
3.4. Dynamic stiffness matrices of symmetry contributions

Matrices AðoÞ and BðoÞ used in expressions (13) and (14) are built with the help of a symbolic
computation software.
The software computes the expressions of the force components owing to the force–displace-

ment relationship (3) which are given, for the Kirchhoff theory from expressions (19) and (20).
The general solution described in Section 3.2 is then truncated at rank N.
The displacement and force components are evaluated on the free edges of the quarter

segment of the plate, and integration constants are factorized. This operation allows one
to obtain the matrices qHoðsÞ and qGoðsÞ involved in expressions (7) and (8). In the case
of the fully symmetric contribution, the factorizations processed are the following (41)
and 42:

quðsÞ ¼

W SSð1; ZÞ

bySS
ð1; ZÞ

W SSðx; 1Þ

bxSS
ðx; 1Þ

0
BBBB@

1
CCCCA ¼

SSqH10ðZÞ . . . SSqH1NðZÞ
SSqH20ðxÞ . . . SSqH2NðxÞ

" #

A0

B0

C0

D0

..

.

AN

BN

CN

D

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

(41)
N
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and

qfðsÞ ¼

FSSð1; ZÞ

MySS
ð1; ZÞ

FSSðx; 1Þ

MxSS
ðx; 1Þ

0
BBBB@

1
CCCCA ¼

SSqG10ðZÞ . . . SSqG1NðZÞ
SSqG20ðxÞ . . . SSqG2NðxÞ

" #

A0

B0

C0

D0

..

.

AN

BN

CN

DN

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

. (42)

The Hilbert basis ðekðsÞÞk2N presented in Section 2.4 is defined along each free edge of the quarter
segment of the plate. This basis is

cos kpZ; sin
ð2k � 1ÞpZ

2

� �� �
k2N

on the edge defined by x ¼ 1, (43)

cos kpx; sin
ð2k � 1Þpx

2

� �� �
k2N

on the edge defined by Z ¼ 1. (44)

Algebraic expressions of the projections hqHij; eki and hqGij; eki involved in expressions (13) and
(14) are built by the symbolic computation software and collected in the matrices AðoÞ and BðoÞ:
The number M of processed projections is such that resulting matrices AðoÞ and BðoÞ are square
matrices, that is to say M ¼ N: In the case of the fully symmetric contribution, the processed
matrices are those involved in expressions (45) and (46).

Z
SSW 0
Z
SSby0

x
SSW 0

x
SSbx0

..

.

Z
SSW N
Z
SSbyN

x
SSW N

x

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

¼

1
2

R 1
�1

SSqH10ðZÞdZ . . . 1
2

R 1
�1

SSqH1NðZÞdZ
1
2

R 1
�1

SSqH20ðxÞdx . . . 1
2

R 1
�1

SSqH2NðxÞdx

..

. . .
. ..

.R 1
�1

SSqH10ðZÞ cos NpZdZ . . .
R 1
�1

SSqH1NðZÞ cos NpZdZR 1
�1

SSqH20ðxÞ cos Npxdx . . .
R 1
�1

SSqH2NðxÞ cos Npxdx

0
BBBBBBBBB@

1
CCCCCCCCCA

A0

B0

C0

D0

..

.

AN

BN

CN

DN

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

(45)
SSbxN
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and

Z
SSF0
Z
SSMy0

x
SSF0

x
SSMx0

..

.

Z
SSFN
Z
SSMyN

x
SSFN

x
SSMxN

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

¼

1
2

R 1
�1

SSqG10ðZÞdZ . . . 1
2

R 1
�1

SSqG1NðZÞdZ
1
2

R 1
�1

SSqG20ðxÞdx . . . 1
2

R 1
�1

SSqG2NðxÞdx

..

. . .
. ..

.R 1
�1

SSqG10ðZÞ cos NpZdZ . . .
R 1
�1

SSqG1NðZÞ cos NpZdZR 1
�1

SSqG20ðxÞ cos Npxdx . . .
R 1
�1

SSqG2NðxÞ cos Npxdx

0
BBBBBBBBB@

1
CCCCCCCCCA

A0

B0

C0

D0

..

.

AN

BN

CN

DN

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

. (46)

The projections of the fully symmetric transverse displacement are such that

W SSð1; ZÞ ¼
Z
SSW 0 þ

XN

k

Z
SSW k cos kpZ, (47a)

W SSðx; 1Þ ¼
x
SSW 0 þ

XN

k

x
SSW k cos kpx. (47b)

In the case of the symmetric–symmetric contribution, the vectors composed with the projections
that are the left-hand side of expressions (45) and (46) are noted USS and FSS: For each
contribution, matrices AðoÞ and BðoÞ are built. Algebraic expressions of their components are
obtained and implemented in FORTRAN instructions by the symbolic computation software.
The produced instructions are used in a continuous element code library.
For each circular frequency o; the continuous element code evaluates numerically matrices

AðoÞ and BðoÞ: The dynamic stiffness matrices KSSðoÞ; KAAðoÞ; KSAðoÞ and KASðoÞ relative to the
four contributions are obtained according to expression (15). This operation is conducted with a
numerical inversion of the matrices AðoÞ:
3.5. Dynamic stiffness matrix of the completely free rectangular plate

The dynamic stiffness matrix of the completely free plate is obtained by superpositioning of the
dynamic stiffness matrices for each symmetry contribution. The principle of the superposition is
described here. The displacement components along each edge are developed on the Hilbert basis.
For example, the transverse displacement along the edge 1 defined by x ¼ 1 is given by expression
(48).

W ð1; ZÞ ¼ 1W S0
þ
XN

k¼1

1W Sk
cos kpZþ

XN

k¼1

1W Ak
sin

ð2k � 1ÞpZ
2

� �
(48)
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and along the edge 3 defined by x ¼ �1:

W ð�1; ZÞ ¼ 3W S0
þ
XN

k¼1

3W Sk
cos kpZþ

XN

k¼1

3W Ak
sin

ð2k � 1ÞpZ
2

� �
. (49)

The projections 1W Sk
; 1W Ak

and those concerning the other displacement components are
collected into one vector, denoted Ue: The components of the vector Ue are expressed in terms of
the components of the displacement vectors of the symmetry contributions USS; UAA; USA and
UAS defined above. This is done by the use of expressions (22) for each displacement component.
For example, the fully symmetric transverse displacement is given by

W SSð1; ZÞ ¼ 1
4
½W ð1; ZÞ þ W ð�1;�ZÞ þ W ð�1; ZÞ þ W ð1;�ZÞ�. (50)

Then, the use of developments Eq. (48) on each edge gives

W SSð1; ZÞ ¼
1

2
1W S0

þ 3W S0
þ
XN

k¼1

ð1W Sk
þ 3W Sk

Þ cos kpZ

" #
(51)

and the identification between expressions Eqs. (47) and (51) gives

Z
SSW k ¼ 1

2
ð1W Sk

þ 3W Sk
Þ. (52)

The identification is performed for each component of the vectors USS; UAA; USA and UAS: These
operations give a linear relation Eq. (53) between the vector Ue and the previous ones.

USS

UAA

USA

UAS

0
BBB@

1
CCCA ¼

1

2
T:Ue. (53)

Similar but reverse operations are conducted on the force components. For example, the vertical
reaction on edge 1 is given by expression (54)

Fð1; ZÞ ¼ FSSð1; ZÞ þ FAAð1; ZÞ þ FSAð1; ZÞ þ FASð1; ZÞ. (54)

The development of each contribution on the Hilbert basis is inserted in expression (54) and
identification is achieved. This gives, for the vertical reaction on edge 1, with the same notations as
above,

1FSk
¼

Z
SSFk þ

Z
ASFk,

1FAk
¼

Z
AAFk þ

Z
SAFk.

One obtains, in a matricial form,

Fe ¼ TT:

FSS

FAA

FSA

FAS

0
BBB@

1
CCCA. (55)
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Hence, the dynamic stiffness matrix of the fully free plate, defined by expression (1), is given by
expression (56).

KðoÞ ¼
1

2
TT:

KSS 0 0 0

0 KAA 0 0

0 0 KSA 0

0 0 0 KAS

0
BBB@

1
CCCAT. (56)

3.6. Numerical validation

A rectangular Kirchhoff continuous element (KCE) is implemented from the dynamic stiffness
matrix Eq. (56). The results obtained by this formulation are compared with harmonic responses
obtained by finite element models. A completely free rectangular plate is subjected to a unit
vertical harmonic force at one of its corners. The vertical response of the structure is evaluated at
the same corner; see Fig. 2.
The dimensions of the plate are a ¼ 0:5m; b ¼ 0:25m and h ¼ 0:002m: The constitutive

material is such that E ¼ 210;000� 106 Pa; n ¼ 0:3 and r ¼ 7800kg=m3:
Now consider condition (40) as regards to this problem. One finds that the maximum circular

frequency which could be considered for the Kirchhoff theory is

omax ¼ 3:105 rad=s (57)

Hence, the maximum frequency f max is

f max ¼ 50;000Hz. (58)

Several finite element meshings of the plate are used with three-node discrete Kirchhoff triangles
(DKT) and four-node discrete Kirchhoff quadrilateral (DKQ) elements. First, the harmonic
response of the plate is obtained with finite element models involving, respectively, 50� 25;
2b

2a

Fig. 2. Completely free rectangular plate.
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100� 50 and 200� 100 DKT elements. The finite element solutions are obtained with the full
method and are compared with an only KCE model solution. The KCE formulation involves a
nine-term series. The projections of the unit force on the Hilbert basis are evaluated. One obtains

1FS0
¼

1

2b
; 1FSk

¼ 1FAk
¼

ð�1Þk

b
.

The displacement of the corner is obtained from

W ¼ 1W S0
þ
X9
k¼1

1W Sk
ð�1Þk �

X9
k¼1

1W Ak
ð�1Þk.

The curves processed over ½02400Hz� frequency range (which is far below the frequency limit
Eq. (58)) are presented in Fig. 3. The response obtained from the 200� 100 DKT model is
fully converged with the KCE model results and is not represented.
A very good convergence of finite elements results toward the continuous element result can be

noticed. Therefore, the precision of the continuous element formulation is obvious.
For the continuous element formulation, the number of degrees of freedom is only 136 when

the numbers of degrees of freedom for finite elements formulations are, respectively, 2028, 7803
and 30,603. The bandedness of the algebraic linear system is lost but the benefit on volume of data
stored in files is very significant when the structure is composed of many plates.
Afterwards, DKQ finite elements are used and the results are more precisely compared on

½3002325Hz� frequency range. This range has been chosen because an antiresonance
phenomenon occurs that requires a refined finite element model. Fig. 4 shows details of the
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-100

-80

-60

-40

-20
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z|

Fig. 3. Harmonic responses: —, 1KCE; ? � , 50� 25 DKT; — ., 100� 50 DKT.
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Fig. 4. Harmonic responses: —, 1KCE; ? � , 100� 100 DKQ; - � - � -., 150� 150 DKQ, - - - 220� 220 DKQ.
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response curves. In order to increase the precision of the finite element model, a 220� 220 DKQ
meshing is used (146, 523 dof). The finite element solutions are obtained from the modal
superposition method with 250 modes taken into account.
Good convergence of finite elements results toward the continuous element result can be

observed.
Higher frequency ranges have been explored in order to evaluate the numerical stability of the

method. For example, the response curves on ½300023500Hz� are shown in Fig. 5.
The response is obtained with a 13-term EC model and a 15-term EC model. Discrepancies in

the neighborhood of 3500Hz show that at least 15 terms are required. The number of required
terms increases with the frequency range. A convergence study that takes into account the number
of terms is necessary for each problem. With regard to the numerical stability, no unstability has
been observed when the frequency reaches its physical limit given by expression (40). The
numerical stability has been estimated from the observation of the response curves. Variations of
the response with the circular frequency, between resonances and anti-resonances, are quite
smooth, even if the dimensions of the plate are increased. The number of required terms for such
frequencies precludes a converged solution with 15 terms but the obtained response is very
regular.
3.7. Post-processing

Post-processing consists of computing displacement fields inside the rectangular domain.
Displacement projections Ue being known, expression (53) allows one to obtain displacement
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Fig. 5. Harmonic response on higher frequency range.
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projections relative to each symmetry contribution. Thus, inversions of expressions similar to
expression (45) give the integration constant sets A0;B0; . . . ;CN ;DN relative to each contribution.
From these constants, it is possible to compute displacement fields according to expressions (24)
and (38). Hence, the total displacement inside the domain is obtained from expression (21). For
example, the transverse displacement field at 400Hz is processed; see Fig. 6.
3.8. Damped structures

The dynamic stiffness matrix can include complex terms, so structural damping may be taken
into account. The introduction of complex modulii (Young’s and Coulomb’s modulii as E� ¼

E0ð1þ jdEÞ and G� ¼ G0ð1þ jdGÞ) is very easy. Fig. 7 shows the effect of structural damping on
the harmonic response for the previous plate problem with d ¼ dE ¼ dG:
4. Conclusions

The rectangular Kirchhoff continuous element presented in this paper is particularly efficient
when studying harmonic response of rectangular plates over a large frequency range. It offers a
clear advantage over finite elements, particularly its high precision and low memory cost. Its
performance has been evaluated on a 2GHz Personal Computer without any optimization of
algorithms. The response of the plate for 100 distinct frequencies is obtained in 10 s. This
calculation speed could certainly be enhanced with judicious optimizations. The next step of the
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Fig. 6. Transverse displacement at 400Hz.
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Fig. 7. Harmonic response of damped plate: —, d ¼ 0; —, d ¼ 0:01; ?, d ¼ 0:02:
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complete development of the rectangular Kirchhoff continuous element is to take in-plane
vibration into account. This step is nearly completed and will be the subject of the next paper.
Rectangular plates assemblies will also be considered.
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